The Chain Rule is a fundamental concept in calculus that allows us to differentiate composite functions. In simpler terms, it helps us find the derivative of a function that is inside another function.
Here's the basic idea:
If we have a composite function f(g(x))
, its derivative with respect to x
is given by:
d/dx [f(g(x))] = f'(g(x)) * g'(x)
Where:
f'(g(x))
is the derivative of the outer function f
evaluated at the inner function g(x)
.g'(x)
is the derivative of the inner function g(x)
.In essence, the chain rule states that the derivative of a composite function is the product of the derivative of the outer function (evaluated at the inner function) and the derivative of the inner function.
Here are some key aspects and applications of the chain rule:
f(g(h(x)))
). In such cases, you need to apply the chain rule multiple times.Example:
Let's say y = sin(x^2)
.
Identify Outer and Inner Functions:
f(u) = sin(u)
g(x) = x^2
Find Derivatives:
f'(u) = cos(u)
g'(x) = 2x
Apply the Chain Rule:
dy/dx = f'(g(x)) * g'(x) = cos(x^2) * 2x = 2x * cos(x^2)
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page