Okay, here's information about y = f(2x)
in Markdown format with the linked terms as requested:
The function y = f(2x)
represents a horizontal transformation of the original function y = f(x)
. Specifically, it's a horizontal compression or stretch.
Horizontal Compression/Stretch: In the case of y = f(2x)
, the graph of f(x)
is horizontally compressed by a factor of 1/2. This means that every x-coordinate on the original graph is halved, effectively squeezing the graph towards the y-axis.
Transformation of Functions: Understanding how changing the argument of a function (in this case, replacing x
with 2x
) affects the graph is a key concept in function transformations.
To find the x-intercepts of y = f(2x)
, you would set y=0
, giving f(2x) = 0
. If f(x) = 0
when x = a
, then f(2x) = 0
when 2x = a
, or x = a/2
. The x-intercepts are also compressed by a factor of 1/2.
The y-intercept remains unchanged. Because the y-intercept occurs when x = 0
, we have y = f(2*0) = f(0)
, which is the same as the y-intercept of y = f(x)
.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page